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Abstract, The cyclomatic number of a cluster is introduced as a measure of its degree of 
compactness or ramification. Using Monte Carlo data for a two-dimensional Ising model, 
estimates are given of the average number of spins and the average number of cycles per 
cluster as a function of temperature. The results are related to the Whitney polynomial 
studied recently by Temperley and Lieb. An exact calculation by these authors at the 
critical temperature enables the pattern of behaviour in the critical region to be conjectured. 

1. Introduction 

The droplet model of condensation was first introduced in the 19303, and served very 
effectively as a basis for explaining the phenomena of nucleation and metastability. It 
was always envisaged that the droplets were spherical in shape, and no attempt was 
made to take account of other possible shapes of droplet. In an attempt to construct a 
mimic partition function for a condensing gas, Fisher (1967) allowed for such changes of 
shape by including a surface entropy term. However, the droplets were still considered 
to be ‘compact’, i.e. the surface area s is proportional to nu for large n where (T is less 
than 1. One of the present authors (Domb 1976) recently suggested that ramified 
droplets of a tree-like or sponge-like character for which U = 1 should be taken into 
account, and could play an important part in explainingbehaviour in the critical region. 

For percolation in random systems (see e.g. Essam 1972) there is good theoretical 
support for the suggestion that only ramified clusters play a significant role (Domb 
1974a, Stauffer 1975). The problem of percolation in Ising systems (i.e. with 
interactions) has also recently received attention (Muller-Krumbhaar 1974, Coniglio 
1975), and the correlation of shapes of clusters with critical behaviour is again of 
interest. 

In a preliminary communication (Domb et a1 1975) we took advantage of Monte 
Carlo data obtained with a two-dimensional one-spin-flip Ising model (Glauber model) 
to obtain statistical estimates of the parameter U at different temperatures related to 
T,. When TIT, is sufficiently large the interaction can be ignored and the system is one 
of pure percolation. However the concentration p is equal to $, which is below the 
critical concentration for this lattice (p = 0.59). For all temperatures above T, the 
parameter U was found to be effectively 1, which means that clusters are largely 
ramified. But even just below T, typical clusters show evidence of ramification. 

The aim of the present paper is to introduce a parameter which represents the 
degree of compactness or ramification, and hence to quantify the above concepts. We 
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were greatly helped in the search for such a parameter by the discussions of Temperley 
and Lieb (1971) on the Whitney polynomial and its relationship to percolation and the 
king model. This is a polynomial in two variables q and x with attention focused on the 
cyclomatic numbers of different graphs (for a general introduction to graph theoretical 
terminology see Essam and Fisher 1970 or Domb 1974b). For q = 1 the Whitney 
polynomial is related to the bond percolation problem, and for q = 2 to the king 
problem. The relation between the Potts model (Potts 1952) and the percolation 
problem was dealt with in the pioneering work of Kasteleyen and Fortuin (1969) and 
Fortuin and Kasteleyn (1972) and the relation between the Potts model and the 
Whitney polynomial has been established by Baxter (1973). Temperley and Lieb 
calculated exactly in the form of a closed form integral the sum of the means of the 
number of cycles and disconnected components at the critical point for all q ;  because of 
a simple relationship between the two at the critical point each of these quantities is 
known exactly. 

Following these ideas we have used the cyclomatic number as a measure of the 
degree of compactness of a cluster, and we have calculated a number of auxiliary 
parameters which indicate how the sizes and shapes of clusters change with temperature 
for the king model. Direct comparison with the exact results of Temperley and Lieb is 
possible only in the king case (q = 2). Data which we have obtained for percolation 
correspond to site percolation, whereas the calculations of Temperley and Lieb are for 
bond percolation; nevertheless one can draw qualitative comparisons between the two 
problems. 

2. Statistical parameters 

Consider a cluster of n points and 1 bonds. The cyclomatic number c(n, I) of the cluster 
is defined by 

c (n, E )  = 1 - n + 1 , (1) 
and represents the number of independent cyc1e.s in the cluster. For a tree c = 0, for a 
simple polygon c = 1, and ramified clusters correspond to small c. The most compact 
cluster on a square (SQ) lattice is a square (it is a circle only for a continuum) for which 

c,,, = (n ”* - I ) ~ .  (2) 

A = C/Cmax = c / ( n  - 1)2. (3) 

We therefore define the coefficient of a compactness of a cluster, A ,  as 

This can go from 0 (completely ramified) to 1 (completely compact). 
In analysing the statistics of clusters we must be careful to differentiate between ‘per 

site’ and ‘per cluster’ averages. The following definitions should clarify this point. 
Consider a lattice of N Ising spins a number of which are overturned; we are interested 
in the limit of large N. Let z (n, N )  be the number of clusters of n points, formed by the 
overturned spins. We then define z(n),  the probability per site of finding an n-cluster, 
as 

The probability that any given site belongs to an n-cluster of overturned spins is nz (n ) .  
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Hence if there is no infinite cluster, the average number of clusters per site is given by 

(C)s,te = z (n 1, 
n 

and the average number of overturned spins per site by 

The latter is closely related to the magnetization. 
In percolation theory we are often interested in statistics in ihe presence of an 

infinite cluster; for example, for the Ising model in three dimensions infinite clusters 
occur for most lattices even when T <  Tc (Muller-Krumbhaar 1974). Equation (5) does 
not have to be modified since the addition of one infinite cluster to z(n, N) makes 
negligible difference asymptotically as N +  00. However, equation (6) must be modified 
to take account of the infinite cluster, 

where P, represents the probability per site of belonging to the infinite cluster; for a 
finite system we define a spanning cluster S ( N )  as a cluster which extends to the 
boundaries of the system; if the number of spins belonging to the spanning cluster is 
S ( N )  then 

We also define the average number of cycles per site as 

where F(n)  is the average of c(n, 1 )  over 1. 

the average number of spins per cluster as 
Passing now to cluster averages which characterise cluster sizes and shapes we define 

Average number of overturned spins per site - C nz ( n )  
C z(n)  * 

- (n)c,uster = Average number of clusters per site 

Similarly the average number of cycles per cluster is given by 

3. Cluster statistics for the Ising model 

In a previous communication (Domb et a1 1975) we were largely concerned with the 
behaviour of the number of surface bonds s in a cluster, defined by 

s=nQ-21,  (12) 

c = n(1Q - 1) - I s  + 1 

where Q is the coordination number of the lattice. Using definition (1) we see that 

(13) 
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so that the c(n) behaviour can be readily obtained from the Monte Carlo cluster surface 
data. In figure 1 we show the behaviour of c(n) as a function of n for various values of 
T/T,. Asymptotically the curves all become linear in n ; since by equation (2) cmax is 
asymptotically equal to n, we find that for large clusters, the compactness coefficient is 
given by 

A = lim(dE/dn). 
n-tm 

n 

F i i  1. Cyclomatic number c as a function of n at different temperatures. For large n, c 
becomes linear, and the slope is a measure of the compactness of the cluster. Values of T/T, 
are shown on the figure. 

By this means the curve in figure 2 has been derived showing the variation of A with 
(T, /T) .  At T = 00 corresponding to random percolation at 85% of critical concentra- 
tion, A is about 0.2. As T decreases, A increases smoothly and steadily reaching a value 
of about 0.7 at T,. Below T,, A increases quite rapidly to 1. 

.... 

1 I c 
0 0 5  1.0 

T , / T  

Fig"? 2. Coefficient of compactness A of large clusters as a function of temperature. 
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At T, the behaviour of z ( n )  as a function of n is well known from investigations 
related to Fisher’s droplet model 

z ( n ) = A / n 2 + ‘ ” 6 ’ .  (15) 

However, we shall see later that relation (15) can be understood from first principles 
independently of the assumptions of the droplet model. Because of the long tail of the 
distribution (15) all moments other than the first become infinite, and care is needed in 
performing averages. Fortunately in two dimensions we know exactly that S = 15 and 
hence the asymptotic contribution of large clusters can be assessed accurately. 

Figure 3 shows the variation of the mean number of clusters per site with 
temperature. The sudden increase as T goes below T, seems surprising at first sight; but 
even though the total number of overturned spins drops very rapidly the fragmentation 
into small clusters is even more rapid, so that on balance (C)site increases. 

O ’ O i  

Figure 3. Mean number of clusters per site as a function of temperature. The broken curve 
represents conjectured behaviour in the critical region. 

Turning now to statistics of individual clusters we first calculate the average number 
of spins per cluster (n)cI,,,e, from equation (10). This is shown in figure 4 as a function of 
Tc/T;  the number increases steadily as the temperature is lowered from about 7 at 
T = 00 to 3 1 at T = T,. Below T, the number drops quickly and dramatically to 2 or 3. 

We now calculate (c),ite from (10) which has a direct relationship to the Whitney 
polynomial, and show it graphically in figure 5 .  The maximum value as T + T,, is about 
0.31, whereas for large clusters the value given by the asymptotic slope of dE/dn is 
about 0.36; we thus find that smaller clusters reduce the average of (c)site since they 
have relatively fewer cycles. The value calculated by Temperley and Lieb at T = T, is 
0.128 (Temperley 1976) and we have marked it on the figure. It is this value which 
indicates a very rapid continuous variation near T,, and that the slope at T, is probably 
infinite. This calculation has led to the conjectured form of behaviour which we have 
indicated in the critical region. 

We now calculate the average number of cycles per cluster from (1 1). The result is 
shown in figure 6, and its behaviour parallels that of (n),I,,,e,. 
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Figure 4. Mean number of spins per cluster as a 

t 

function of temperature 

T / r ,  
Figure 5. Mean number of cycles per site as a function of temperature. 0 represents the 
exact calculation of Temperley and Lieb at T = T,. 

4. Theoretical discussion 

In a previous communication (Domb et a1 1975) attention was drawn to the difference 
between physical clusters which represent real physical droplets and are of relevance to 
the Ising problem for T <  T,, and geometrical clusters which arise in the percolation 
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TJT 

Figure 6. Mean number of cycles per cluster as a function of temperature. 

problem and in the two-dimensional Ising problem for T >  T,. Some doubts were 
expressed as to whether the latter have any relevance to critical behaviour. 

However the Whitney polynomial (Temperley and Lieb 1971, Essam 1971, Baxter 
1973) which serves as a bridge between the percolation and Ising problems does focus 
attention on such geometrical clusters. It would be interesting to examine cluster 
statistics for the pure percolation problem to find whether they parallel the statistics of 
the king model described in the previous sections. The same Monte Carlo system can 
be used as previously to obtain percolation statistics, but the magnetic field must be 
varied at sufficiently high temperatures so as to change the concentration. A computer 
has been programmed to gather such data, and we hope to undertake an analysis in a 
subsequent communication. We also hope to deal with cluster statistics for finite values 
of T/T,  (> 1) where both percolation and Ising interaction effects are present. 

In regard to the Fisher droplet model we remarked that the parameters (+ and T did 
not have the significance which Fisher originally assigned to them. Nevertheless since 
scaling seems to hold for percolation as well as Ising systems (Essam and Gwilym 1971), 
one might expect that the distribution of clusters near the critical point will depend on 
only two parameters. We therefore look for an alternative interpretation of these 
parameters which can apply in both problems. 

The critical point in both problems is characterised by a slow decay of large clusters 
of the form 

z ( n )  eA/n2+' .  (16) 
This has been established recently for percolation by Monte Carlo analysis (Quinn et a1 
1976) and by exact enumeration (Gaunt and Sykes 19761, and estimates of 7 have been 
obtained. For the Ising problem in a field H the magnetisation is given by 

m 

m = 1-2  nz(n)exp(-npH).  
n = l  

If we assume that for sufficiently small H the distribution (16) is not significantly 
affected, we obtain from (17) the relation 

(18) m -HIIT 
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so that r is simply related to the critical exponent S. Since we know that S = 15 exactly 
in two dimensions, we also know that 

(19) 

It is more difficult to find a suitable interpretation for the second parameter (which 
we shall call (T* to differentiate from Fisher's original (T). In the simple Fisher model the 
parameter (T was related to the surface exponent, and described the distribution of 
clusters away from T,  as 

1 r =E. 

z (n) -n- 'exp(-An"(T, -T)) .  (20) 

This formula cannot be correct for T > T ,  since it corresponds to an exponential 
increase with increasing n.  In fact the model fails to give physically sensible results for 
T > T ,  (Gaunt and Baker 1970) since it ignores the volume exclusion of different 
droplets, and this plays a very significant role in the critical region (Domb 1976). 
Attempts have been made to take account of the volume exclusion empirically (e.g. 
Reatto 1970), but using scaling ideas only one could assume instead of (20) that 

z(n)-n-TF(n"*(T,- T ) )  (2 1) 

with F(u)  an arbitrary scaling function. From the relation (1 7) in zero field below T, one 
then finds that the spontaneous magnetisation is given by 

m 

m o - 1 - 2  x'--TF(x"*(T,-T))dx 

and hence that the exponent /3 is equal to l/u*S. Thus 

U* = l/PS 

and is exactly 
Monte Carlo data for T near T, in two dimensions fit reasonably well to a formula of 

type (2 1) (Muller-Krumbhaar and Stoll 1976). Unfortunately in three dimensions the 
problem is complicated by the presence of infinite percolating clusters below T, 
(Muller-Krumbhaar 1974) and no such simple interpretation is possible. Binder 
(1976) has attempted to re-define the concept of cluster thereby introducing a new 
scaling exponent. His ideas are quite sophisticated and have been used by Muller- 
Krumbhaar and Stoll(l976) in an attempt to fit three-dimensional Monte Carlo cluster 
data. However no clear prescription has yet been given for dealing with the infinite 
percolating cluster. 

Using similar ideas Stauffer (1976) has proposed differentiating between the 
internal and external surfaces of a cluster; he suggests that the internal surfaces give rise 
to the asymptotic value (T = 1 quoted in the introduction, whereas external surfaces are 
responsible for the true exponent (T*. Applying the concept to percolating clusters 
Stauffer suggests (as does Binder) that ramification does not play a significant part in 
critical behaviour. 

Whilst these interesting ideas offer a partial explanation of observed numerical data, 
they have some features which are untenable. For example, the value 0-4 of (T* derived 
for percolation clusters is geometrically impossible (the same property of (T in three 
dimensions was already noted by Fisher (1967) in the original droplet model). 

In our view the theory given by Stauffer is an oversimplification, and a rigid 
differentiation between internal and external surfaces is no longer helpful in the critical 

in two dimensions. 
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region. We also feel that the picture of the external surface of a percolation cluster near 
the critical concentration as a slightly imperfect sphere is inadequate. We suggest that 
further insight into the physical significance of CT* may be obtained from studying the 
statistics of percolating clusters, and of the transition from the percolation to the Ising 
critical point. We hope to undertake such studies shortly. 

5. Conclusions 

The introduction of the cyclomatic number has enabled us to provide a numerical 
measure of the degree of compactness A of a cluster. Using Monte Carlo data obtained 
in a one-spin-flip simulation of the king model we have computed the variation of A 
with temperature, as well as various other statistical parameters connected with the 
distribution of clusters. Some of these parameters are related to the Whitney polyno- 
mial which has been the subject of recent exact investigations. 
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